Finite-size scaling and conformal invariance in a self-dual quantum $Z(5)$ model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L1085
(http://iopscience.iop.org/0305-4470/19/17/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Finite-size scaling and conformal invariance in a self-dual quantum $\boldsymbol{Z}(5)$ model

Francisco C Alcaraz \dagger
Department of Mathematics, The Faculties, Australian National University, PO Box 4, Canberra ACT 2601, Australia

Received 22 July 1986

Abstract

We consider the critical behaviour of a particular set of one-dimensional self-dual models with $Z(N)$ symmetry ($N \leqslant 5$). The critical indices are evaluated using standard finite-size scaling and by exploiting their relations with the mass gap amplitudes predicted by conformal invariance. Our results strongly suggest that the recently introduced $Z(N)$ quantum field theory is the underlying field theory for these statistical mechanics models.

In recent years much attention has been devoted to the study of two-dimensional lattice statistical models invariant under $Z(N)$ global transformations (Elitzur et al 1979, Alcaraz and Köberle 1980, 1981, Cardy 1980). These spin models are defined in terms of $Z(N)$ spin variables:

$$
S(r)=\exp (\mathrm{i} 2 \pi / N) n(r) \quad(n(r)=0,1, \ldots, N-1)
$$

located at the lattice sites r.
Since the work of Kramers and Wannier (1941), duality has proved to be a powerful tool for examining the behaviour of systems undergoing phase transitions. The most general self-dual $Z(N)$ model with only next-nearest-neighbour interactions, on the square lattice, is defined by the Hamiltonian

$$
\begin{equation*}
H=\sum_{i, j}\left[H_{1}(n(i, j)-n(i+1, j))+H_{-1}(n(i, j)-n(i, j+1))\right] \tag{1a}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{k}(n)=-\sum_{m=1}^{\bar{N}} J_{k m}\left[\cos \left(\frac{2 \pi}{N} m n\right)-1\right] \quad k=-1,1 \tag{1b}
\end{equation*}
$$

and \bar{N} is the integer part of $N / 2$ and $J_{k m} ; k=-1,1, m=1,2, \ldots, \bar{N}$ are the coupling constants in the X and Y directions respectively. The corresponding Boltzmann weights are given by

$$
\begin{equation*}
X_{n}^{(k)} \equiv \exp \left(-\beta H_{k}(n)\right) \quad k=-1,1 \quad n=0,1, \ldots, N-1 \tag{2}
\end{equation*}
$$

and under the duality transformation these weights are transformed to (Alcaraz and Köberle 1980, 1981)

$$
\begin{equation*}
\tilde{X}_{n}^{(k)}=\left[\sum_{m=0}^{N-1} \exp \left(\frac{\mathrm{i} 2 \pi m n}{N}\right) X_{m}^{(-k)}\right]\left(\sum_{m=0}^{N-1} X_{m}^{(-k)}\right)^{-1} \tag{3}
\end{equation*}
$$

[^0]The self-dual subspace, fixed under the duality transformation ($\tilde{X}_{n}^{(k)}=X_{n}^{(k)}, k=-1,1$; $n=0,1, \ldots, N-1)$, is a line for $N=2,3$, a plane for $N=4,5$, etc, and coincides with the critical surface in the regions of the parameter space where the transition is unique.

Fateev and Zamolodchikov (1982), by looking for possible solutions of the startriangle relations for self-dual $Z(N)$ models, were able to find the free energy per particle for a particular family of $Z(N)$ spin models on the square lattice. Their solution corresponds to the Boltzmann weights

$$
\begin{array}{lcl}
X_{0}^{(k)}=1 & X_{n}^{(1)}=f_{n}(\alpha) & X_{n}^{(2)}=f_{n}(\pi-\alpha) \quad k=-1,1 \\
& n=1, \ldots, N-1 \tag{4a}
\end{array}
$$

where

$$
\begin{equation*}
f_{n}(\alpha)=\prod_{k=0}^{n-1} \sin \left(\frac{\pi k}{N}+\frac{\alpha}{2 N}\right)\left[\sin \left(\frac{\pi(k+1)}{N}-\frac{\alpha}{2 N}\right)\right]^{-1} \tag{4b}
\end{equation*}
$$

and α is an arbitrary constant that fixes the anisotropy of the model.
More recently the same authors (Zamolodchikov and Fateev 1985) have constructed and made important predictions for a self-dual quantum field theory possessing $Z(N)$ invariance in ($1+1$) dimensions. The conformal anomaly or central charge of their Virasoro algebra is given by

$$
\begin{equation*}
c=2(N-1) /(N+2) \tag{5a}
\end{equation*}
$$

These theories have ($N-1$) fields (order parameters) with anomalous dimensions

$$
\begin{equation*}
2 d_{n}=n(N-n) / N(N+2) \quad n=1,2, \ldots, N-1 \tag{5b}
\end{equation*}
$$

and ($N-1$) dual fields (disorder parameters) with the same dimensions as in ($5 b$), due to the self-dual behaviour of the theory. From ($5 b$) we can see that $d_{N-n}=d_{n}$, $n=1, \ldots, N-1$ so that we have only \bar{N} operators with distinct dimensions. There are also $\bar{N} Z(N)$ neutral fields with dimension

$$
\begin{equation*}
2 D_{n}=2 n(n+1) /(N+2) \quad n=1,2, \ldots, \bar{N} . \tag{5c}
\end{equation*}
$$

Zamolodchikov and Fateev (1985) conjectured that the statistical mechanics model with the Boltzmann weights (4) is critical and conformally invariant, the essential ingredients of its underlying field theory being given by $(5 a)-(5 c)$; the $Z(N)$ charged ('magnetic') and neutral ('thermal') exponents are related to ($5 b$) and ($5 c$) respectively \dagger.

The purpose of this letter is to test the above conjecture for the cases where $N \leqslant 5$ by using finite-size lattices. The cases $N=6$ and 7 will be treated in a more extensive report. In order to perform a finite-size scaling (FSS) analysis of the model defined by the Hamiltonian (1) at the couplings given in (4) we need, as usual, to calculate the leading eigenvalues of the associated transfer matrix. This is generally difficult even for small lattices (size L) because the associated Hilbert space has dimension N^{L} and the transfer matrix is dense. However, more recently, it has been shown (Alcaraz and Lima Santos 1986) that the family of one-dimensional quantum $Z(N)$ models governed by the Hamiltonian

$$
\begin{equation*}
H_{N}=-\sum_{i=-\infty}^{\infty} \sum_{n=1}^{N-1}\left[S^{n}(i) S^{+n}(i+1)+R^{n}(i)\right] / \sin (\pi n / N) \tag{6}
\end{equation*}
$$

\dagger It is interesting to remark that the above dimensions ($5 b$) and ($5 c$) correspond exactly to the exponents of the antiferromagnetic critical points of the rSos model (Andrews et al 1984, Huse 1984).
has an infinite number of local and non-local conservation laws. In (6), $S(i), R(i)$ are quantum operators that satisfy the $Z(N)$ algebra

$$
\begin{aligned}
& {[S(i), R(j)]=[S(i), S(j)]=[R(i), R(j)]=0 \quad i \neq j} \\
& S(i) R(i)=\exp (i 2 \pi / N) R(i) S(i) \quad R^{N}(i)=S^{N}(i)=1 .
\end{aligned}
$$

Moreover the generator of the infinite set of charges corresponds to the diagonal-todiagonal transfer matrix T_{D} of the model (1) with the couplings (4), the first charge being the Hamiltonian (6), i.e. [$\left.T_{\mathrm{D}}, H\right]=0$. Consequently we can, in an equivalent way, study the Hamiltonians (6), which are sparse matrices, instead of the Euclidean models given by (1) and (4). The ground state energy per particle for the infinite system has also been evaluated (Alcaraz and Lima Santos 1986)

$$
\begin{equation*}
E_{0}=-N \int_{0}^{\infty} \frac{\sinh \left(\frac{1}{2} \pi x\right) \sinh \left[\frac{1}{2} \pi x(N-1)\right]}{\cosh ^{2}\left(\frac{1}{2} \pi x\right) \cosh \left(\frac{1}{2} \pi N x\right)} \mathrm{d} x-\sum_{n=1}^{N-1} \frac{1}{\sin (\pi n / N)} . \tag{7}
\end{equation*}
$$

The conjecture for $N=2(N=3)$ is easily verified because the models (4) and (6) correspond to the Euclidean and Hamiltonian versions of the critical Ising (3-state Potts) model. The central charge c as well as the anomalous dimensions X_{m} for the order (or disorder) operator and X_{e} for the energy operator are exactly given by the predicted values (5) (Belavin et al 1984a, b).

The $Z(4)$ case can be better analysed by replacing the operators $S(i), R(i)$ in (6) in terms of two Pauli matrices $\sigma^{2}(i), \sigma^{x}(i) ; \tau^{2}(i), \tau^{x}(i)$ at each lattice point

$$
\begin{aligned}
H_{4}=-\sum_{i}[\sqrt{2}(& \left.\sigma^{x}(i)+\tau^{x}(i)\right)+\sigma^{x}(i) \tau^{x}(i)+\sqrt{2}\left(\sigma^{z}(i) \sigma^{z}(i+1)\right. \\
& \left.\left.+\tau^{z}(i) \tau^{z}(i+1)\right)+\sigma^{z}(i) \sigma^{z}(i+1) \tau^{z}(i) \tau^{z}(i+1)\right]
\end{aligned}
$$

This Hamiltonian is critical, being a particular point $\beta=\frac{1}{2} \sqrt{2}$ (see Kohmoto et al 1981, Alcaraz and Drugowich de Felício 1984) in the critical line of the quantum AshkinTeller model with correlation length, magnetic and electric exponents given by

$$
\nu=\frac{3}{4} \quad \gamma_{m}=\frac{21}{16} \quad \gamma_{p}=\frac{5}{4}
$$

respectively. These exponents give the following dimensions for the energy, magnetic and electric operators: $X_{\varepsilon}=d-1 / \nu=\frac{2}{3}, X_{m}=\frac{1}{2}\left(d-\gamma_{m} / \nu\right)=\frac{1}{8}$ and $X_{p}=\frac{1}{2}\left(d-\gamma_{p} / \nu\right)=\frac{1}{6}$, which reproduces (5b) and (5c) for $N=4$. The second neutral operator is marginal $X_{\varepsilon \varepsilon}=2$ and probably corresponds to the marginal operator (four-spin couplings) of the eight-vertex model (Kadanoff and Wegner 1971). To complete the $Z(4)$ case we mention that the equivalence between the quantum Ashkin-Teller model and the XXZ model (see e.g. Kohmoto et al 1981) implies that this model must also have $c=1$ (Blöte et al 1986) in agreement with (5a).

For the rest of this letter we will concentrate on the $Z(5)$ case whose Hamiltonian, for a lattice of size L, is

$$
\begin{align*}
H_{5}=-\sum_{i=-L / 2}^{L / 2}\{ & \lambda\left[\left(R(i)+R^{+}(i)\right) / \sin (\pi / 5)+\left(R^{2}(i)+R^{+2}(i)\right) / \sin (2 \pi / 5)\right] \\
& +\left(S(i) S^{+}(i+1)+S^{+}(i) S(i+1)\right) / \sin (\pi / 5) \\
& \left.+\left(S^{2}(i) S^{+2}(i+1)+S^{+2}(i) S^{2}(i+1)\right) / \sin (2 \pi / 5)\right\} \tag{8}
\end{align*}
$$

where the coupling λ, which plays the role of temperature, has been introduced \dagger. The above Hamiltonian, with periodic boundary conditions, commutes with the $Z(5)$ charge operator

$$
\exp (\mathrm{i} 2 \pi Q / 5)=\prod_{i=-L / 2}^{L / 2} R(i)
$$

and consequently in the R basis the Hilbert space is separated into five disjoint sectors labelled by the eigenvalues of $Q(q=0,1, \ldots, 4)$. The ground state $E_{0}^{(0)}(\lambda)$ is in the $Q=0$ sector and the sectors with $Q=q$ and $Q=(5-q)$ are degenerate. These sectors can be further block diagonalised according to the eigenvalues of the translation operator (linear momentum operator). All the numerical calculation of eigenvalues in this letter were performed using the Lanczos method (Hamer and Barber 1981a, b, Roomany et al 1980) and periodic boundary conditions in (8).

We initially apply fSS theory (Barber 1983) in order to calculate the critical temperature λ_{c} and the thermal exponents ν and α. From the lowest eigenenergies $E_{0}^{(q)}(\lambda, L)$ of sectors $q=0,1,2$ we define the two mass gaps

$$
\begin{equation*}
\Lambda_{L}^{(q)} \equiv E_{0}^{(q)}(\lambda, L)-E_{0}^{(0)}(\lambda, L) \quad q=1,2 . \tag{9}
\end{equation*}
$$

According to fss theory the critical temperature λ_{c} may be estimated by the limiting value $(L \rightarrow \infty)$ of the sequence $\lambda_{c}^{(i)}(L)$ obtained by solving

$$
R_{L}^{(q)}=L \Lambda_{L}^{(q)}\left(\lambda_{\mathrm{c}}^{(q)}\right) /(L-1) \Lambda_{L-1}^{(q)}\left(\lambda_{c}^{(q)}\right)=1 \quad q=1,2 .
$$

In table 1 both sequences are shown for $L=3-8$. Using vbs approximants (Vanden et al 1979, Hamer and Barber 1981b) the extrapolated values are $\lambda_{\mathrm{c}}^{(1)}(\infty)=$ 1.00000 ± 0.00002 and $\lambda_{c}^{(2)}(\infty)=1.00002 \pm 0.00002$. These values are consistent with the existence of a unique critical point at $\lambda=\lambda_{\mathrm{c}}=1$ which corroborates the conjecture that models (4) and (6) are critical. The exponents ν and α may be calculated using the Callan-Symanzik β function (Hamer et al 1979)

$$
\beta_{L}^{(q)}(\lambda)=-\Lambda_{L}^{(q)}(\lambda) /\left[\Lambda_{L}^{(q)}(\lambda)-2 \lambda \partial \Lambda_{L}^{(q)} / \partial \lambda\right]
$$

and the analogue of the specific heat per site

$$
C_{L}(\lambda)=-\left(\lambda^{2} / L\right) \partial^{2} E_{0}^{(0)} / \partial \lambda^{2} .
$$

Table 1. Sequences of estimators for the critical temperature of the Hamiltonian (8). $\lambda_{c}^{(q)}(L)$ are obtained by using sectors 0 and q.

L	$\lambda_{c}^{(1)}(L)$	$\lambda_{c}^{(2)}(L)$
3	1.057017	1.037053
4	1.021479	1.011860
5	1.011018	1.005302
6	1.006644	1.002847
7	1.004425	1.001718
8	1.003153	1.001125

\dagger The Hamiltonian (8) may also be obtained in the time-continuum limit ($\alpha \rightarrow 0$) (Fradkin and Susskind 1978) of (1) $(N=5)$ around the point (4).

In table 2 we show, at $\lambda=1$, the value of these functions together with the mass gaps (9). From fss theory we expect (Barber 1983) $\beta_{L}^{(q)}\left(\lambda_{c}\right) \sim L^{1 / \nu}, C_{L}\left(\lambda_{c}\right) \sim L^{\alpha / \nu}$ as $L \rightarrow \infty$ from which we extract, using vBS approximants, $1 / \nu=1.415 \pm 0.005$ and $\alpha / \nu=$ 0.82 ± 0.02 which produces a value of $X_{\varepsilon}=0.575 \pm 0.005$ in close agreement with the prediction (5c).

Statistical mechanics systems at criticality are believed to be conformally invariant (Polyakov 1970). In two dimensions this symmetry has many important implications (for a recent review see Cardy (1986b)). In particular Cardy (1984, 1986a) has derived a set of remarkable relations between the eigenspectrum of the statistical system in a strip of finite width and the anomalous dimensions of the operators describing the critical behaviour of the infinite system.

The relevant results, for our purposes, may be stated as follows. To each primary operator \varnothing, the anomalous dimension X_{\varnothing} and $\operatorname{spin} s_{\varnothing}$ in the operator algebra of the infinite system there exists a set of states in the quantum Hamiltonian, in a periodic chain of L sites, whose energy and momentum, at $\lambda=\lambda_{c}$, are given by

$$
\begin{align*}
& E_{n, n^{\prime}}=E_{0}^{(0)}+\frac{2 \pi}{L} \zeta\left(X_{\varnothing}+n+n^{\prime}\right)+\mathrm{O}\left(L^{-1}\right) \quad n, n^{\prime}=0,1,2, \ldots \tag{10a}\\
& P_{n, n^{\prime}}=\frac{2 \pi}{L}\left(s_{\varnothing}+n-n^{\prime}\right) \quad n, n^{\prime}=0,1,2, \ldots \tag{10b}
\end{align*}
$$

respectively as $L \rightarrow \infty$. The constant ζ is unity in the transfer matrix formalism, but is model dependent for the Hamiltonian system (see for example Alcaraz and Drugowich de Felício 1984, Gehlen et al 1986).

Before we apply the relations (10) to the Hamiltoanian (8) let us denote by $E_{n}^{(q)}(k)$ the energy corresponding to its nth excited state in the sector with charge $Q=q$ and momentum k. The $Z(5)$ neutral operators are related to states in the $q=0$ sector, while the order (or disorder) operators are related to the $q \neq 0$ sectors. The energy operator is the first neutral operator and its anomalous dimension is estimated by

$$
\begin{equation*}
G_{L}^{(0)}(1) \equiv E_{1}^{(0)}(0)-E_{0}^{(0)}(0)=\frac{2 \pi \zeta}{L} X_{\varepsilon}+O\left(L^{-1}\right) \tag{11a}
\end{equation*}
$$

while the dimension $X_{\varepsilon \varepsilon}$ for the second neutral operator is estimated by

$$
\begin{equation*}
G_{L}^{(0)}(2) \equiv E_{2}^{(0)}(0)-E_{0}^{(0)}(0)=\frac{2 \pi \zeta}{L} X_{\varepsilon \varepsilon}+\mathrm{O}\left(L^{-1}\right) \tag{11b}
\end{equation*}
$$

Table 2. Finite-lattice results for the $Z(5)$ model. Listed are the values at $\lambda=\lambda_{c}=1$ of the mass gap $\Lambda_{L}^{(4)}(q=1,2)$, the β functions $\beta^{(4)}(q=1,2)$ and the specific heat C_{L}.

L	$\Lambda_{L}^{(1)}(1)$	$\Lambda_{L}^{(2)}(1)$	$\beta_{L}^{(1)}(1)$	$\beta_{L}^{(2)}(1)$	$C_{L}(1)$
2	2.222415179	2.951764728	0.302927480	0.316275389	1.7275464
3	1.378801132	1.881879374	0.166548927	0.176238947	2.8171660
4	1.001817610	1.388298182	0.110328601	0.117553553	3.7660438
5	0.787041336	1.101593945	0.080414545	0.086050594	4.6427419
6	0.648098818	0.913634271	0.062166443	0.066724026	5.4724798
7	0.550802563	0.780710922	0.050027540	0.053816064	6.2680440
8	0.478856835	0.681666394	0.041451272	0.044668541	7.0370613

The charge q operators, with dimensions $X_{m}^{(q)}(q=1, \ldots, 4)$, which govern the correlations $\left\langle S^{q}(i) S^{+q}(i+n)\right\rangle$ are estimated by the relation

$$
\begin{equation*}
G_{L}^{(q)}(1) \equiv E_{0}^{(q)}(0)-E_{0}^{(0)}(0)=\frac{2 \pi \zeta}{L} X_{m}^{(q)} \quad q=1, \ldots, 4 \tag{11c}
\end{equation*}
$$

Due to the generacy of the sectors mentioned before, $X_{m}^{(q)}=X_{m}^{(N-q)}$ (with $q=1, \ldots, 4$), in agreement with ($5 b$). The constant ζ may be extracted from the difference in energy of two successive states related to the same primary operator (Gehlen et al 1986, Alcaraz and Barber 1987); for example we can use

$$
\begin{equation*}
Z_{L} \equiv E_{0}^{(1)}\left(\frac{2 \pi}{L}\right)-E_{0}^{(1)}(0)=\frac{2 \pi \zeta}{L}+\mathrm{O}\left(L^{-1}\right) . \tag{11d}
\end{equation*}
$$

In table 3 we give our estimators ($11 a-c$) for lattices up to size $L=9$. The extrapolation of these sequences, using the alternate ε algorithm (Hamer and Barber 1981b) gives the values

$$
X_{\varepsilon}=0.572 \pm 0.002 \quad X_{\varepsilon \varepsilon}=1.73 \pm 0.02
$$

for the neutral operators and

$$
X_{m}^{(1)}=X_{m}^{(4)}=0.1143 \pm 0.0001 \quad X_{m}^{(2)}=X_{m}^{(3)}=0.1712 \pm 0.0001
$$

for the magnetic ones. These values are in close agreement with the predicted values given by ($5 b, c$):

$$
X_{\varepsilon \varepsilon}=\frac{12}{7} \approx 1.71432 \quad X_{m}^{(1)}=\frac{4}{35} \approx 0.11429 \quad X_{m}^{(2)}=\frac{6}{35} \approx 0.17143 .
$$

We emphasise that the agreement is reasonable even for $\boldsymbol{X}_{\varepsilon \varepsilon}$, which corresponds to an irrelevant operator.

Table 3. Ratio of mass-gap amplitudes for the $Z(5)$ model; see equations (11a-d).

L	$L Z_{L}$	$G_{L}^{(0)}(1) / Z_{L}$	$G_{L}^{(0)}(2) / Z_{L}$	$G_{L}^{(1)}(1) / Z_{L}$	$G_{L}^{(2)}(1) / Z_{L}$
2	21.1948214	1.1726680	1.9016161	0.2097130	0.2785364
3	27.0633078	0.8810805	1.7146664	0.1528418	0.2086086
4	29.2397287	0.7871071	1.6951805	0.1370488	0.1899194
5	30.2431681	0.7409454	1.6994783	0.1301189	0.1821228
6	30.7744725	0.7133835	1.7073789	0.1263577	0.1781283
7	31.0831304	0.6949456	1.7148301	0.1240421	0.1758181
8	31.2745378	0.6816602	1.7210695	0.1224911	0.1743697
9	31.3990076	0.6715755	1.7261138	0.1213876	0.1734077

In additional to the predictions (11) conformal invariance also predicts (Blöte et al 1986, Affleck 1986) that the ground state energy at criticality should behave as

$$
\begin{equation*}
E_{0}^{(0)}(0) / L=e_{0}-\frac{1}{6} \pi c \zeta / L^{2}+\mathrm{O}\left(L^{-2}\right) \quad L \rightarrow \infty . \tag{12}
\end{equation*}
$$

Here c is the central charge of the conformal class governing the transition in the infinite system and e_{0} is the ground state energy per site in the infinite lattice limit which for the Hamiltonian (8) can be calculated exactly by using (7): $e_{0}=$ -6.431 029721005

The conformal anomaly c can be extracted by extrapolating the sequence

$$
\begin{equation*}
c_{L} \equiv-12\left(E_{0}^{(0)}(0)-L e_{0}\right) / Z_{L} . \tag{13}
\end{equation*}
$$

Table 4. Finite-size sequence for the extrapolation of the conformal anomaly c for the $Z(5)$ model.

L	$-E_{0}^{(0)}(0) / L$	$-12\left(E_{0}^{(0)}(0)-e_{0} L\right) / Z_{L}$	$-12\left(E_{0}^{(0)}(0)-e_{0} L\right) L / 10 \pi$
2	7.265085	1.888887	1.274342
3	6.781381	1.398128	1.204420
4	6.624093	1.267735	1.179918
5	6.553365	1.213515	1.168214
6	6.515504	1.185820	1.161608
7	6.492871	1.169858	1.157465
8	6.478263	1.159890	1.154670
9	6.468285	1.153301	1.152681

In table 4 we exhibit this sequence. The vBS approximants give an extrapolated value of $c=1.13(5)$ which is close to the prediction ($5 a$). One of the major error sources in this estimate of c concerns the evaluation of the constant ζ (Alcaraz and Barber 1986). However the value of ζ can be conjectured by returning to the general Hamiltonian (6). For $N=2 \zeta$ is exactly 2 while previous finite-size calculations indicate $\zeta=3$ for $N=3$ (Gehlen et al 1986) and $\zeta=4$ for $N=4$ (Alcaraz and Drugowich de Felício 1984). These facts and the numbers of table 3 , for the case $N=5$, suggest that $\zeta=N$ for any $N \geqslant 2$. In table 4 we also show the sequence (13) with Z_{L} fixed to the conjectured value of $10 \pi / L$ which gives the extrapolated value $c=1.142(9)$ in excellent agreement with the predicted value $c=\frac{8}{7} \approx 1.14285$ given by ($5 a$).

In summary, by using fSS we have shown that the Hamiltonian (6) for $N \leqslant 5$ is critical. Exploring the finite-size implications of the conformal invariance of the infinite critical system our results strongly indicate that the $Z(N)$ self-dual quantum field theory introduced by Zamolodchikov and Fateev (1985) is the underlying field theory for the statistical models (4) and (6). To conclude we would like to mention we believe (Fateev and Zamolodchikov 1982) that for $N \geqslant 5$ the models (6) and (8) describe the bifurcation points in the phase diagram of the general model (1), where a soft phase originates (Alcaraz and Köberle 1980).

It is a pleasure to acknowledge M N Barber and M T Batchelor for profitable discussions and P Rujan for calling my attention to the Zamolodchikov and Fateev (1985) paper. This work was supported in part by the Australian Research Grant Scheme and by Fundação de Amparo à Pesquisa do Estado de São Paulo, Brasil.

References

Affleck I 1986 Phys. Rev. Lett. 56746
Alcaraz F C and Barber M N 1986 Australian National University preprint

- 1987 J. Phys. A: Math. Gen. 20 to be published

Alcaraz F C and Drugowich de Felício J R 1984 J. Phys. A: Math. Gen. 17 L651
Alcaraz F C and Köberle R 1980 J. Phys. A: Math. Gen. 13 L153

- 1981 J. Phys. A: Math. Gen. 141169

Alcaraz F C and Lima Santos A 1986 Nucl. Phys. B to appear
Andrews G F, Baxter R J and Forrester P J 1984 J. Stat. Phys, 35193
Barber M N 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and JL Lebowitz (New York: Academic) p 145
Belavin A A, Polyakov A M and Zamolodchikov A B 1984a J. Stat. Phys. 34763

Belavin A A, Polyakov A M and Zamolodchikov A B 1984b Nucl. Phys. B 241333
Blöte H W J, Cardy J L and Nightingale M P 1986 Phys. Rev. Lett. 56742
Cardy J L 1980 J. Phys. A: Math. Gen. 131507

- 1984 J. Phys. A: Math. Gen. 17 L385
- 1986a Nucl. Phys. B 270186
_- 1986b Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New York:
Academic) to appear
Elitzur S, Pearson R B and Shigemitsu J 1979 Phys. Rev. D 193698
Fateev V A and Zamolodchikov A B 1982 Phys. Lett. 92A 37
Fradkin E and Susskind L 1978 Phys. Rev. D 172637
Gehlen G v, Rittenberg V and Ruegg H 1986 J. Phys. A: Math. Gen. 19107
Hamer C J and Barber M N 1981a J. Phys. A: Math. Gen. 14259
_- 1981b J. Phys. A: Math. Gen. 142009
Hamer C J, Kogut J and Susskind L 1979 Phys. Rev. D 193091
Huse D A 1984 Phys. Rev. B 303908
Kadanoff L and Wegner F 1971 Phys. Rev. B 43989
Kohmoto N, den Nijs M and Kadanoff L 1981 Phys. Rev. B 245229
Kramers H A and Wannier G H 1941 Phys. Rev. 60252
Polyakov A M 1970 Zh. Eksp. Teor. Fiz. Pis. Red. 12538 (1970 JETP Lett. 12 381)
Roomany H H, Wild H W and Holloway L E 1980 Phys. Rev. D 211557
Vanden J M, Broeck J M and Schwartz L W 1979 J. Math. Anal. 10658
Zamolodchikov A B and Fateev V A 1985 Zh. Eksp. Teor. Fiz. 89380 (1985 Sov. Phys.-JETP 62 215)

[^0]: \dagger Permanent address: Departamento de Física Universidade Federal de São Carlos, CP616, 13560 São Carlos, SP, Brazil.

