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LElTER TO THE EDITOR 

Finite-size scaling and conformal invariance in a self-dual 
quantum Z(5) model 

Francisco C Alcarazl- 
Department of Mathematics, The Faculties, Australian National University, PO Box 4, 
Canberra ACT 2601, Australia 

Received 22 July 1986 

Abstract. We consider the critical behaviour of a particular set of one-dimensional self-dual 
models with Z ( N )  symmetry ( N  s 5 ) .  The critical indices are evaluated using standard 
finite-size scaling and by exploiting their relations with the mass gap amplitudes predicted 
by conformal invariance. Our results strongly suggest that the recently introduced Z ( N )  
quantum field theory is the underlying field theory for these statistical mechanics 
mod e 1 s. 

In recent years much attention has been devoted to the study of two-dimensional lattice 
statistical models invariant under Z( N )  global transformations (Elitzur et a1 1979, 
Alcaraz and Koberle 1980, 1981, Cardy 1980). These spin models are defined in terms 
of Z ( N )  spin variables: 

S( r )  = exp (i27r/ N ) n (  r )  ( n ( r ) = O ,  1 , .  . . N -  1 )  

located at the lattice sites r. 
Since the work of Kramers and Wannier (1941), duality has proved to be a powerful 

tool for examining the behaviour of systems undergoing phase transitions. The most 
general self-dual Z( N )  model with only next-nearest-neighbour interactions, on the 
square lattice, is defined by the Hamiltonian 

H = E  [Hl(n(i ,  j ) - n ( i +  1 ,  j ) ) + K 1 ( n ( i ,  j ) - n ( i ,  j +  I ) ) ]  ( l a )  
ij 

where 

Hk(n)=- C ’G Jkm [ cos (”” - m n  ) - 1 1  k = - 1 , l  
m = l  

and are the coupling 
constants in the X and Y directions respectively. The corresponding Boltzmann 
weights are given by 

is the integer part of N/2  and Jkm; k = - 1 , 1 ,  m = 1,2 , .  . . , 

X!,k’=exp(-PHk(n)) k = - l , 1  n = 0 , 1 ,  . . . ,  N-1 (2) 
and under the duality transformation these weights are transformed to (Alcaraz and 
Koberle 1980, 1981) 

X ,  - ( k ) -  - [ N - ’  exp (i2kmn) - xLk’ ]( 1’ x L k ) ) - l  

m = O  m = O  
(3 )  

t Permanent address: Departamento de Fisica Universidade Federal de SBo Carlos, CP616, 13560 Si0  
Carlos, SP, Brazil. 
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The self-dual subspace, fixed under the duality transformation (2ik) = X'k '  n ,  k = -1  9 9  1 .  
n = 0, 1 ,  . . . , N - l ) ,  is a line for N = 2,3 ,  a plane for N = 4 , 5 ,  etc, and coincides with 
the critical surface in the regions of the parameter space where the transition is unique. 

Fateev and Zamolodchikov (1982), by looking for possible solutions of the star- 
triangle relations for self-dual Z ( N )  models, were able to find the free energy per 
particle for a particular family of Z(N) spin models on the square lattice. Their 
solution corresponds to the Boltzmann weights 

xp = 1 x y = f n  (a) X ' , " = f n ( 7 W X )  k = - l ,  1 

n = l ,  ..., N-1 ( 4 a )  
where 

n - 1  (rrk a ) [  (rr(k+l) a)]-' 
sin --- 

k - 0  N 2N N 2N 
f n ( a ) =  n sin -+- 

and a is an arbitrary constant that fixes the anisotropy of the model. 
More recently the same authors (Zamolodchikov and Fateev 1985) have constructed 

and made important predictions for a self-dual quantum field theory possessing Z (  N )  
invariance in ( 1  + 1 )  dimensions. The conformal anomaly or central charge of their 
Virasoro algebra is given by 

c = 2( N - 1)/( N + 2).  

2dn = n ( N  - n)/ N( N +2) 

( 5 a )  

(5b)  

These theories have ( N  - 1) fields (order parameters) with anomalous dimensions 

n = l , 2 ,  . . . ,  N-1 

and ( N  - 1 )  dual fields (disorder parameters) with the same dimensions as in (5b) ,  
due to the self-dual behaviour of the theory. From (5b)  we can see that dN-,, = d,, 
n = 1 , .  . . , N - 1 so that we have only operators with distinct dimensions. There 
are also Z (  N) neutral fields with dimension 

2 0 ,  = 2n( n + 1)/( N+2) n = 1 , 2, . . . , N. ( 5 c )  

Zamolodchikov and Fateev (1985) conjectured that the statistical mechanics model 
with the Boltzmann weights (4) is critical and conformally invariant, the essential 
ingredients of its underlying field theory being given by ( 5 a ) - ( 5 c ) ;  the Z( N) charged 
('magnetic') and neutral ('thermal') exponents are related to ( 5 6 )  and (5c)  respectively?. 

The purpose of this letter is to test the above conjecture for the cases where N s 5 
by using finite-size lattices. The cases N = 6 and 7 will be treated in a more extensive 
report. In order to perform a finite-size scaling ( FSS) analysis of the model defined by 
the Hamiltonian ( 1 )  at the couplings given in (4 we need, as usual, to calculate the 
leading eigenvalues of the associated transfer matrix. This is generally difficult even 
for small lattices (size L) because the associated Hilbert space has dimension N L  and 
the transfer matrix is dense. However, more recently, it has been shown (Alcaraz and 
Lima Santos 1986) that the family of one-dimensional quantum Z (  N) models governed 
by the Hamiltonian 

m N - l  

{=-os n = l  
HN = -  c [ S " ( i ) S ' " ( i + l ) + R " ( i ) ] / s i n ( r r n / N )  

t I t  is interesting to remark that the above dimensions ( 5 b )  and ( 5 c )  correspond exactly to the exponents 
of the antiferromagnetic critical points of the RSOS model (Andrews ef aI 1984, Huse 1984). 
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has an infinite number of local and non-local conservation laws. In (6), S ( i ) ,  R(i)  
are quantum operators that satisfy the Z ( N )  algebra 

[S(i) ,  R( J ) l=  [ S ( i ) ,  W l =  [Wi) ,  WJ)l = O  

S(i)R(i)  = exp(i2.rr/N)R(i)S(i) 

i Z j  

R N ( i )  = S N ( i )  = 1. 

Moreover the generator of the infinite set of charges corresponds to the diagonal-to- 
diagonal transfer matrix TI, of the model (1) with the couplings (4), the first charge 
being the Hamiltonian (6), i.e. [ T,,  HI = 0. Consequently we can, in an equivalent 
way, study the Hamiltonians (6), which are sparse matrices, instead of the Euclidean 
models given by (1) and (4). The ground state energy per particle for the infinite 
system has also been evaluated (Alcaraz and Lima Santos 1986) 

(7) 
sinh($.rrx)sinh[f.rrx(N - l ) ]  N-l  1 

dx-  
cosh2(f.rrx)cosh($.rrNx) sin(.rrn/N) * 

The conjecture for N = 2 ( N  = 3) is easily verified because the models (4) and (6) 
correspond to the Euclidean and Hamiltonian versions of the critical Ising (3-state 
Potts) model. The central charge c as well as the anomalous dimensions X ,  for the 
order (or disorder) operator and X ,  for the energy operator are exactly given by the 
predicted values ( 5 )  (Belavin et a1 1984a, b). 

The Z(4) case can be better analysed by replacing the operators S(i) ,  R ( i )  in (6) 
in terms of two Pauli matrices az( i ) ,  a"(i); T z ( i ) ,  Tx(i) at each lattice point 

H4 = -E [v?(ax( i ) +  Tx(i)) + a"( i)TX(i)+v?(&( i)a '( i  + 1) 
I 

+ Tz(i)Tz(i + 1)) + a'(i)a '( i+ 1 ) F (  i)T*(i+ l)]. 

This Hamiltonian is critical, being a particular point /3 =id2 (see Kohmoto et a1 1981, 
Alcaraz and Drugowich de Felicio 1984) in the critical line of the quantum Ashkin- 
Teller model with correlation length, magnetic and electric exponents given by 

Y = i  ym =% Y p  =: 

respectively. These exponents give the following dimensions for the energy, magnetic 
and electric operators: X ,  = d - 1/ Y = 3, X ,  = f (d  - y,/ v) = and X ,  = f(d - yp /  v )  = i, 
which reproduces ( 5 b )  and ( 5 c )  for N = 4. The second neutral operator is marginal 
X,, = 2 and probably corresponds to the marginal operator (four-spin couplings) of 
the eight-vertex model (Kadanoff and Wegner 1971). To complete the Z(4) case we 
mention that the equivalence between the quantum Ashkin-Teller model and the 
XXZ model (see e.g. Kohmoto et a1 1981) implies that this model must also have 
c = 1 (Blote et a1 1986) in agreement with (sa) .  

For the rest of this letter we will concentrate on the Z(5) case whose Hamiltonian, 
for a lattice of size L, is 

H5 = - 
LIZ 

{A[(R(i) + R+( i))/sin(.rr/5) + (R2(i)  + R+'( i ) ) / s in(2~/5) ]  
i=-L /2  

+ (S( i)S+( i + 1) + S+(  i)S( i + l))/sin( ~ / 5 )  
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where the coupling A, which plays the role of temperature, has been introduced?. The 
above Hamiltonian, with periodic boundary conditions, commutes with the Z( 5 )  charge 
operator 

LIZ 

i = - L / 2  
exp(i2rrQ/5)= n R ( i )  

and consequently in the R basis the Hilbert space is separated into five disjoint sectors 
labelled by the eigenvalues of Q ( q  = 0,1, . . . ,4) .  The ground state ELo’(A) is in the 
Q = 0 sector and the sectors with Q = q and Q = ( 5  - q )  are degenerate. These sectors 
can be further block diagonalised according to the eigenvalues of the translation 
operator (linear momentum operator). All the numerical calculation of eigenvalues 
in this letter were performed using the Lanczos method (Hamer and Barber 1981a, b, 
Roomany et a[ 1980) and periodic boundary conditions in (8). 

We initially apply FSS theory (Barber 1983) in order to calculate the critical 
temperature A, and the thermal exponents v and a. From the lowest eigenenergies 
EP’(A, L )  of sectors q = 0,1,2 we define the two mass gaps 

A P ’ =  E?’(& L) - ELo’(A, L )  q=1 ,2 .  (9) 

According to FSS theory the critical temperature A, may be estimated by the limiting 
value ( L  + CO) of the sequence A :’( L) obtained by solving 

Riq’= L A i q ) ( A p ) ) / ( L -  1)AP?,(Aiq)) = 1 q = 1,2. 

In table 1 both sequences are shown for L=3-8. Using VBS approximants (Vanden 
et al 1979, Hamer and Barber 1981b) the extrapolated values are hr’(co)= 
1 .OOO 00 * 0.000 02 and AL”(co) = 1 .OOO 02 * 0.000 02. These values are consistent with 
the existence of a unique critical point at A = A, = 1 which corroborates the conjecture 
that models (4) and ( 6 )  are critical. The exponents v and a may be calculated using 
the Callan-Symanzik p function (Hamer et al 1979) 

P P ’ ( h )  = -AP’(A)/[Ay’(A) -2AdAp’/dA] 

and the analogue of the specific heat per site 

c,( A )  = - (A  2/ L)d’E?’/dA ’. 

Table 1. Sequences of estimators for the critical temperature of the Hamiltonian (8). 
h 2 ) (  L) are obtained by using sectors 0 and q. 

3 1.057 017 1.037 053 
4 1.021 479 1.011 860 
5 1.011 018 1.005 302 
6 1.006 644 1.002 847 
7 1.004 425 1.001 718 
8 1.003 153 1.001 125 

t The Hamiltonian (8) may also be obtained in the time-continuum limit (a +O) (Fradkin and Susskind 
1978) of (1) ( N  = 5) around the point (4). 
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In table 2 we show, at A = 1, the value of these functions together with the mass gaps 
(9). From FSS theory we expect (Barber 1983) p:“’(Ac) - L””,  C,(A,) - L a / ”  as L+0O 
from which we extract, using VBS approximants, l / v =  1.415*0.005 and a/v= 
0.82 f 0.02 which produces a value of X ,  = 0.575 f 0.005 in close agreement with the 
prediction (5c).  

Statistical mechanics systems at criticality are believed to be conformally invariant 
(Polyakov 1970). In two dimensions this symmetry has many important implications 
(for a recent review see Cardy (1986b)). In particular Cardy (1984, 1986a) has derived 
a set of remarkable relations between the eigenspectrum of the statistical system in a 
strip of finite width and the anomalous dimensions of the operators describing the 
critical behaviour of the infinite system. 

The relevant results, for our purposes, may be stated as follows. To each primary 
operator 0, the anomalous dimension X ,  and spin s0 in the operator algebra of the 
infinite system there exists a set of states in the quantum Hamiltonian, in a periodic 
chain of L sites, whose energy and momentum, at A = A,, are given by 

27r 
L 

E , , . =  E p + -  ((X,+n + n ’ ) + O ( L - ’ )  

P,,,. =- (s,+ n - n‘) 

n, n’=O, 1,2, . .  . ( loa )  

( lob)  

respectively as L +  00. The constant is unity in the transfer matrix formalism, but is 
model dependent for the Hamiltonian system (see for example Alcaraz and Drugowich 
de Felicio 1984, Gehlen er a1 1986). 

Before we apply the relations (10) to the Hamiltoanian (8) let us denote by ELq’( k) 
the energy corresponding to its nth excited state in the sector with charge Q = q and 
momentum k. The Z(5) neutral operators are related to states in the q = 0 sector, while 
the order (or disorder) operators are related to the q # 0 sectors. The energy operator 
is the first neutral operator and its anomalous dimension is estimated by 

27r 
L 

n, n‘=0, 1 , 2 , .  . .  

while the dimension X, ,  for the second neutral operator is estimated by 

Table 2. Finite-lattice results for the Z(5) model. Listed are the values at A = A, = 1 of the 
mass gap A i q )  (9 = 1,2), the /3 functions /3“‘) (9 = 1,2) and the specific heat CL. 

L A y ’ ( 1 )  Af!)(I)  Bz“(1)  Pi?’( 1) CL(1) 

2 2.222415 179 2.951 764 728 0.302 927 480 0.316 275 389 1.727 5464 
3 1.378 801 132 1.881 879 374 0.166 548 927 0.176 238 947 2.817 1660 
4 1.001 817 610 1.388 298 182 0.110328601 0.117 553 553 3.766 0438 
5 0.787 041 336 1.101 593945 0.080414 545 0.086 050 594 4.642 7419 
6 0.648 098 818 0.913 634 271 0.062 166 443 0.066 724 026 5.472 4798 
7 0.550 802 563 0.780 710 922 0.050 027 540 0.053 8 16 064 6.268 0440 
8 0.478 856 835 0.68 1 666 394 0.041 451 272 0.044 668 541 7.037 0613 
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The charge q operators, with dimensions X‘,4’(q = 1,  , . . , ,4) ,  which govern the correla- 
tions ( S 4 ( i ) S ’ q ( i +  n)) are estimated by the relation 

GP)(1)= E ~ ’ ( 0 ) - E ~ o ) ( 0 ) = ~ X 2 ’  L q = 1, * . . , 4 .  (1lc) 

Due to the generacy of the sectors mentioned before, X 2 ’ =  X i N - q ’  (with q = 1 , .  . . ,4 ) ,  
in agreement with (5b) .  The constant 5 may be extracted from the difference in energy 
of two successive states related to the same primary operator (Gehlen er al 1986, 
Alcaraz and Barber 1987); for example we can use 

In table 3 we give our estimators (1 la-c)  for lattices up to size L = 9. The extrapolation 
of these sequences, using the alternate E algorithm (Hamer and Barber 1981b) gives 
the values 

X ,  = 0.572 f 0.002 x,, = 1.73 * 0.02 

for the neutral operators and 
X:’ = X‘,“’ = 0.1143 rtO.0001 Xz’=X$’=0.1712*0.0001 

for the magnetic ones. These values are in close agreement with the predicted values 
given by (5b, c): 

X,, =?= 1.71432 X!,!) = = 0.1 14 29 Xz’=$==0.17143. 

We emphasise that the agreement is reasonable even for X,, , which corresponds to 
an irrelevant operator. 

Table 3. Ratio of mass-gap amplitudes for the Z(5) model; see equations ( l l a - d ) .  

21.194 8214 
27.063 3078 
29.239 7287 
30.243 1681 
30.774 4725 
31.083 1304 
31.274 5378 
31.399 0076 

1.172 6680 
0.881 0805 
0.787 1071 
0.740 9454 
0.713 3835 
0.694 9456 
0.681 6602 
0.671 5755 

1.901 6161 
1.7146664 
1.695 1805 
1.699 4783 
1.707 3789 
1.714 8301 
1.721 0695 
1.726 1138 

0.209 7130 
0.152 8418 
0.137 0488 
0.130 1189 
0.126 3577 
0.1 24 042 1 
0.122 4911 
0.121 3876 

0.278 5364 
0.208 6086 
0.1899194 
0.182 1228 
0.178 1283 
0.175 8181 
0.1743697 
0.173 4077 

In additional to the predictions (1 1)  conformal invariance also predicts (Blote et 
al 1986, Affleck 1986) that the ground state energy at criticality should behave as 

E ~ ” ( o ) / L  = eo-+,.rrcl/L2+O(L-2) L + W .  (12) 
Here c is the central charge of the conformal class governing the transition in the 

infinite system and eo is the ground state energy per site in the infinite lattice limit 
which for the Hamiltonian (8) can be calculated exactly by using (7):  eo= 
-6.431 029 721 0 0 5 . .  . . 

The conformal anomaly c can be extracted by extrapolating the sequence 
cL = -12(~b0’(0) - Leo) /ZL .  (13) 
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Table 4. Finite-size sequence for the extrapolation of the conformal anomaly c for the 
Z(5)  model. 

2 7.265 085 1.888 887 1.274 342 
3 6.781 381 1.398 128 1.204 420 
4 6.624 093 1.267 735 1.179 918 
5 6.553 365 1.213 515  1.168 214 
6 6.515 504 1.185 820 1.161 608 
7 6.492 871 1.169 858 1.157465 
8 6.478 263 1.159 890 1.154 670 
9 6.468 285 1.153 301 1.152 681 

In table 4 we exhibit this sequence. The VBS approximants give an extrapolated value 
of c = 1.13(5) which is close to the prediction (5u ) .  One of the major error sources in 
this estimate of c concerns the evaluation of the constant C (Alcaraz and Barber 1986). 
However the value of 5 can be conjectured by returning to the general Hamiltonian 
(6). For N = 2 5 is exactly 2 while previous finite-size calculations indicate 5 = 3 for 
N = 3 (Gehlen et a1 1986) and 5 = 4 for N = 4 (Alcaraz and Drugowich de Felicio 
1984). These facts and the numbers of table 3, for the case N = 5 ,  suggest that 5 = N 
for any N 3 2. In table 4 we also show the sequence (13 )  with 2, fixed to the conjectured 
value of l o r /  L which gives the extrapolated value c = 1.142(9) in excellent agreement 
with the predicted value c = $ =  1.142 85 given by ( 5 2 ) .  

In summary, by using FSS we have shown that the Hamiltonian (6) for N s 5 is 
critical. Exploring the finite-size implications of the conformal invariance of the infinite 
critical system our results strongly indicate that the Z ( N )  self-dual quantum field 
theory introduced by Zamolodchikov and Fateev (1985) is the underlying field theory 
for the statistical models (4) and (6). To conclude we would like to mention we believe 
(Fateev and Zamolodchikov 1982) that for N 2 5 the models (6) and (8) describe the 
bifurcation points in the phase diagram of the general model ( l ) ,  where a soft phase 
originates (Alcaraz and Koberle 1980). 

It is a pleasure to acknowledge M N Barber and M T Batchelor for profitable discussions 
and P Rujan for calling my attention to the Zamolodchikov and Fateev (1985) paper. 
This work was supported in part by the Australian Research Grant Scheme and by 
Fundaslo de Amparo B Pesquisa do Estado de Slo Paulo, Brasil. 
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